Overview
ipd
is an open-source R
software package for the downstream modeling of an outcome and its associated features where a potentially sizable portion of the outcome data has been imputed by an artificial intelligence or machine learning (AI/ML) prediction algorithm. The package implements several recent proposed methods for inference on predicted data (IPD) with a single, user-friendly wrapper function, ipd
. The package also provides custom print
, summary
, tidy
, glance
, and augment
methods to facilitate easy model inspection.
Background
Using predictions from pre-trained algorithms as outcomes in downstream statistical analyses can lead to biased estimates and misleading conclusions. The statistical challenges encountered when drawing inference on predicted data (IPD) include:
- Understanding the relationship between predicted outcomes and their true, unobserved counterparts.
- Quantifying the robustness of the AI/ML models to resampling or uncertainty about the training data.
- Appropriately propagating both bias and uncertainty from predictions into downstream inferential tasks.
Several works have proposed methods for IPD, including post-prediction inference (PostPI) by Wang et al., 2020, prediction-powered inference (PPI) and PPI++ by Angelopoulos et al., 2023a and Angelopoulos et al., 2023b, and post-prediction adaptive inference (PSPA) by Miao et al., 2023. Each method was developed to perform inference on a quantity such as the outcome mean or quantile, or a regression coefficient, when we have:
- A dataset consisting of our outcome and features of interst, where the outcome is only observed for a small ‘labeled’ subset and missing for a, typically larger, ‘unlabeled’ subset.
- Access to an algorithm to predict the missing outcome in the entire dataset using the fully observed features.
We can use these methods for IPD to obtain corrected estimates and standard errors by using the predicted outcomes and unlabeled features to augment the labeled subset of the data.
To enable researchers and practitioners interested in these state-of-the-art methods, we have developed the ipd
package in R
to implement these methods under the umbrella of IPD. This README provides an overview of the package, including installation instructions, basic usage examples, and links to further documentation. The examples show how to generate data, fit models, and use custom methods provided by the package.
Installation
To install the development version of ipd
from GitHub, you can use the devtools
package:
#-- Install devtools if it is not already installed
install.packages("devtools")
#-- Install the ipd package from GitHub
devtools::install_github("ipd-tools/ipd")
Usage
We provide a simple example to demonstrate the basic use of the functions included in the ipd
package.
Data Generation
You can generate synthetic datasets for different types of regression models using the provided simdat
function by specifying the sizes of the datasets, the effect size, residual variance, and the type of model. The function currently supports “mean”, “quantile”, “ols”, “logistic”, and “poisson” models. The simdat
function generate a data.frame with three subsets: (1) an independent “training” set with additional observations used to fit a prediction model, and “labeled” and “unlabeled” sets which contain the observed and predicted outcomes and the simulated features of interest.
#-- Load the ipd Library
library(ipd)
#-- Generate Example Data for Linear Regression
set.seed(123)
n <- c(10000, 500, 1000)
dat <- simdat(n = n, effect = 1, sigma_Y = 4, model = "ols")
#-- Print First 6 Rows of Training, Labeled, and Unlabeled Subsets
options(digits=2)
head(dat[dat$set == "training",])
#> X1 X2 X3 X4 Y f set
#> 1 -0.560 -0.56 0.82 -0.356 -0.15 NA training
#> 2 -0.230 0.13 -1.54 0.040 -4.49 NA training
#> 3 1.559 1.82 -0.59 1.152 -1.08 NA training
#> 4 0.071 0.16 -0.18 1.485 -3.67 NA training
#> 5 0.129 -0.72 -0.71 0.634 2.19 NA training
#> 6 1.715 0.58 -0.54 -0.037 -1.42 NA training
head(dat[dat$set == "labeled",])
#> X1 X2 X3 X4 Y f set
#> 10001 2.37 -1.8984 0.20 -0.17 1.40 3.24 labeled
#> 10002 -0.17 1.7428 0.26 -2.05 3.56 1.03 labeled
#> 10003 0.93 -1.0947 0.76 1.25 -3.66 2.37 labeled
#> 10004 -0.57 0.1757 0.32 0.65 -0.56 0.58 labeled
#> 10005 0.23 2.0620 -1.35 1.46 -0.82 -0.15 labeled
#> 10006 1.13 -0.0028 0.23 -0.24 7.30 2.16 labeled
head(dat[dat$set == "unlabeled",])
#> X1 X2 X3 X4 Y f set
#> 10501 0.99 -3.280 -0.39 0.97 8.4 1.25 unlabeled
#> 10502 -0.66 0.142 -1.36 -0.22 -7.2 -1.08 unlabeled
#> 10503 0.58 -1.368 -1.73 0.15 5.6 -0.31 unlabeled
#> 10504 -0.14 -0.728 0.26 -0.23 -4.2 0.91 unlabeled
#> 10505 -0.17 -0.068 -1.10 0.58 2.2 -0.39 unlabeled
#> 10506 0.58 0.514 -0.69 0.97 -1.2 0.76 unlabeled
The simdat
function provides observed and unobserved outcomes for both the labeled and unlabeled datasets, though in practice the observed outcomes are not in the unlabeled set. We can visualize the relationships between these variables:
We can see that:
- The predicted outcomes are more correlated with the covariate than the true outcomes (plot A).
- The predicted outcomes are not perfect substitutes for the true outcomes (plot B).
Model Fitting
We compare two non-IPD approaches to analyzing the data to methods included in the ipd
package. A summary comparison is provided in the table below, followed by the specific calls for each method:
#> Estimate Std.Error
#> Naive 0.98 0.03
#> Classic 1.10 0.19
#> PostPI (Bootstrap) 1.16 0.18
#> PostPI (Analytic) 1.15 0.18
#> PPI++ 1.12 0.19
#> PSPA 1.12 0.19
We can see that the IPD methods have similar estimates and standard errors, while the ‘naive’ method has a different estimate and standard errors that are too small.
0.1 ‘Naive’ Regression Using the Predicted Outcomes
#--- Fit the Naive Regression
lm(f ~ X1, data = dat[dat$set == "unlabeled",]) |>
summary()
#>
#> Call:
#> lm(formula = f ~ X1, data = dat[dat$set == "unlabeled", ])
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -2.5426 -0.6138 -0.0153 0.6345 2.8907
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.8391 0.0297 28.3 <2e-16 ***
#> X1 0.9848 0.0296 33.3 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.94 on 998 degrees of freedom
#> Multiple R-squared: 0.527, Adjusted R-squared: 0.526
#> F-statistic: 1.11e+03 on 1 and 998 DF, p-value: <2e-16
0.2 ‘Classic’ Regression Using only the Labeled Data
#--- Fit the Classic Regression
lm(Y ~ X1, data = dat[dat$set == "labeled",]) |>
summary()
#>
#> Call:
#> lm(formula = Y ~ X1, data = dat[dat$set == "labeled", ])
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -15.262 -2.828 -0.094 2.821 11.685
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.908 0.187 4.86 1.6e-06 ***
#> X1 1.097 0.192 5.71 1.9e-08 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 4.2 on 498 degrees of freedom
#> Multiple R-squared: 0.0614, Adjusted R-squared: 0.0596
#> F-statistic: 32.6 on 1 and 498 DF, p-value: 1.95e-08
You can fit the various IPD methods to your data and obtain summaries using the provided wrapper function, ipd()
:
1.1 PostPI Bootstrap Correction (Wang et al., 2020)
#-- Specify the Formula
formula <- Y - f ~ X1
#-- Fit the PostPI Bootstrap Correction
nboot <- 200
ipd::ipd(formula,
method = "postpi_boot", model = "ols", data = dat, label = "set",
nboot = nboot) |>
summary()
#>
#> Call:
#> Y - f ~ X1
#>
#> Method: postpi_boot
#> Model: ols
#> Intercept: Yes
#>
#> Coefficients:
#> Estimate Std.Error Lower.CI Upper.CI
#> (Intercept) 0.866 0.183 0.507 1.22
#> X1 1.164 0.183 0.806 1.52
1.2 PostPI Analytic Correction (Wang et al., 2020)
#-- Fit the PostPI Analytic Correction
ipd::ipd(formula,
method = "postpi_analytic", model = "ols", data = dat, label = "set") |>
summary()
#>
#> Call:
#> Y - f ~ X1
#>
#> Method: postpi_analytic
#> Model: ols
#> Intercept: Yes
#>
#> Coefficients:
#> Estimate Std.Error Lower.CI Upper.CI
#> (Intercept) 0.865 0.183 0.505 1.22
#> X1 1.145 0.182 0.788 1.50
2. Prediction-Powered Inference (PPI; Angelopoulos et al., 2023)
#-- Fit the PPI Correction
ipd::ipd(formula,
method = "ppi", model = "ols", data = dat, label = "set") |>
summary()
#>
#> Call:
#> Y - f ~ X1
#>
#> Method: ppi
#> Model: ols
#> Intercept: Yes
#>
#> Coefficients:
#> Estimate Std.Error Lower.CI Upper.CI
#> (Intercept) 0.871 0.182 0.514 1.23
#> X1 1.122 0.195 0.740 1.50
3. PPI++ (Angelopoulos et al., 2023)
#-- Fit the PPI++ Correction
ipd::ipd(formula,
method = "ppi_plusplus", model = "ols", data = dat, label = "set") |>
summary()
#>
#> Call:
#> Y - f ~ X1
#>
#> Method: ppi_plusplus
#> Model: ols
#> Intercept: Yes
#>
#> Coefficients:
#> Estimate Std.Error Lower.CI Upper.CI
#> (Intercept) 0.881 0.182 0.524 1.24
#> X1 1.116 0.187 0.750 1.48
4. Post-Prediction Adaptive Inference (PSPA; Miao et al., 2023)
#-- Fit the PSPA Correction
ipd::ipd(formula,
method = "pspa", model = "ols", data = dat, label = "set") |>
summary()
#>
#> Call:
#> Y - f ~ X1
#>
#> Method: pspa
#> Model: ols
#> Intercept: Yes
#>
#> Coefficients:
#> Estimate Std.Error Lower.CI Upper.CI
#> (Intercept) 0.881 0.182 0.524 1.24
#> X1 1.109 0.187 0.743 1.47
Printing and Tidying
The package also provides custom print
, summary
, tidy
, glance
, and augment
methods to facilitate easy model inspection:
#-- Fit the PostPI Bootstrap Correction
nboot <- 200
fit_postpi <- ipd::ipd(formula,
method = "postpi_boot", model = "ols", data = dat, label = "set",
nboot = nboot)
#-- Print the Model
print(fit_postpi)
#>
#> Call:
#> Y - f ~ X1
#>
#> Coefficients:
#> (Intercept) X1
#> 0.86 1.15
#-- Summarize the Model
summ_fit_postpi <- summary(fit_postpi)
#-- Print the Model Summary
print(summ_fit_postpi)
#>
#> Call:
#> Y - f ~ X1
#>
#> Method: postpi_boot
#> Model: ols
#> Intercept: Yes
#>
#> Coefficients:
#> Estimate Std.Error Lower.CI Upper.CI
#> (Intercept) 0.860 0.183 0.502 1.22
#> X1 1.148 0.182 0.790 1.50
#-- Tidy the Model Output
tidy(fit_postpi)
#> term estimate std.error conf.low conf.high
#> (Intercept) (Intercept) 0.86 0.18 0.50 1.2
#> X1 X1 1.15 0.18 0.79 1.5
#-- Get a One-Row Summary of the Model
glance(fit_postpi)
#> method model include_intercept nobs_labeled nobs_unlabeled call
#> 1 postpi_boot ols TRUE 500 1000 Y - f ~ X1
#-- Augment the Original Data with Fitted Values and Residuals
augmented_df <- augment(fit_postpi)
head(augmented_df)
#> X1 X2 X3 X4 Y f set .fitted .resid
#> 10501 0.99 -3.280 -0.39 0.97 8.4 1.25 unlabeled 1.992 6.5
#> 10502 -0.66 0.142 -1.36 -0.22 -7.2 -1.08 unlabeled 0.099 -7.3
#> 10503 0.58 -1.368 -1.73 0.15 5.6 -0.31 unlabeled 1.522 4.1
#> 10504 -0.14 -0.728 0.26 -0.23 -4.2 0.91 unlabeled 0.702 -4.9
#> 10505 -0.17 -0.068 -1.10 0.58 2.2 -0.39 unlabeled 0.667 1.5
#> 10506 0.58 0.514 -0.69 0.97 -1.2 0.76 unlabeled 1.521 -2.7
Vignette
For additional details, we provide more use cases and examples in the package vignette:
vignette("ipd")
Feedback
For questions, comments, or any other feedback, please contact the developers (ssalerno@fredhutch.org).
Contributing
Contributions are welcome! Please open an issue or submit a pull request on GitHub. The following method/model combinations are currently implemented:
Method | Mean Estimation | Quantile Estimation | Linear Regression | Logistic Regression | Poisson Regression | Multiclass Regression |
---|---|---|---|---|---|---|
PostPI | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ |
PPI | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
PPI++ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
PSPA | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
PSPS | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
PDC | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
Cross-PPI | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
PPBoot | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
DSL | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |