PostPI Logistic Regression (Bootstrap Correction)
Source:R/postpi_boot_logistic.R
postpi_boot_logistic.Rd
Helper function for PostPI logistic regression (bootstrap correction)
Arguments
- X_l
(matrix): n x p matrix of covariates in the labeled data.
- Y_l
(vector): n-vector of labeled outcomes.
- f_l
(vector): n-vector of predictions in the labeled data.
- X_u
(matrix): N x p matrix of covariates in the unlabeled data.
- f_u
(vector): N-vector of predictions in the unlabeled data.
- nboot
(integer): Number of bootstrap samples. Defaults to 100.
- se_type
(string): Which method to calculate the standard errors. Options include "par" (parametric) or "npar" (nonparametric). Defaults to "par".
Value
A list of outputs: estimate of inference model parameters and corresponding standard error based on both parametric and non-parametric bootstrap methods.
Details
Methods for correcting inference based on outcomes predicted by machine learning (Wang et al., 2020) https://www.pnas.org/doi/abs/10.1073/pnas.2001238117
Examples
dat <- simdat(model = "logistic")
#> Loading required package: ggplot2
#> Loading required package: lattice
form <- Y - f ~ X1
X_l <- model.matrix(form, data = dat[dat$set_label == "labeled", ])
Y_l <- dat[dat$set_label == "labeled", all.vars(form)[1]] |>
matrix(ncol = 1)
f_l <- dat[dat$set_label == "labeled", all.vars(form)[2]] |>
matrix(ncol = 1)
X_u <- model.matrix(form, data = dat[dat$set_label == "unlabeled", ])
f_u <- dat[dat$set_label == "unlabeled", all.vars(form)[2]] |>
matrix(ncol = 1)
postpi_boot_logistic(X_l, Y_l, f_l, X_u, f_u, nboot = 200)
#> $est
#> [1] 0.7048938 0.4037607
#>
#> $se
#> [1] 0.1255146 0.1364894
#>