Package index
-
A()
- Calculation of the matrix A based on single dataset
-
Sigma_cal()
- Variance-covariance matrix of the estimation equation
-
augment(<ipd>)
- Augment Data from an IPD Fit
-
calc_lhat_glm()
- Estimate PPI++ Power Tuning Parameter
-
compute_cdf()
- Empirical CDF of the Data
-
compute_cdf_diff()
- Empirical CDF Difference
-
est_ini()
- Initial estimation
-
glance(<ipd>)
- Glance at an IPD Fit
-
ipd()
- Inference on Predicted Data (ipd)
-
link_Hessian()
- Hessians of the link function
-
link_grad()
- Gradient of the link function
-
log1pexp()
- Log1p Exponential
-
logistic_get_stats()
- Logistic Regression Gradient and Hessian
-
mean_psi()
- Sample expectation of psi
-
mean_psi_pop()
- Sample expectation of PSPA psi
-
ols()
- Ordinary Least Squares
-
ols_get_stats()
- OLS Gradient and Hessian
-
optim_est()
- One-step update for obtaining estimator
-
optim_weights()
- One-step update for obtaining the weight vector
-
postpi_analytic_ols()
- PostPI OLS (Analytic Correction)
-
postpi_boot_logistic()
- PostPI Logistic Regression (Bootstrap Correction)
-
postpi_boot_ols()
- PostPI OLS (Bootstrap Correction)
-
ppi_logistic()
- PPI Logistic Regression
-
ppi_mean()
- PPI Mean Estimation
-
ppi_ols()
- PPI OLS
-
ppi_plusplus_logistic()
- PPI++ Logistic Regression
-
ppi_plusplus_logistic_est()
- PPI++ Logistic Regression (Point Estimate)
-
ppi_plusplus_mean()
- PPI++ Mean Estimation
-
ppi_plusplus_mean_est()
- PPI++ Mean Estimation (Point Estimate)
-
ppi_plusplus_ols()
- PPI++ OLS
-
ppi_plusplus_ols_est()
- PPI++ OLS (Point Estimate)
-
ppi_plusplus_quantile()
- PPI++ Quantile Estimation
-
ppi_plusplus_quantile_est()
- PPI++ Quantile Estimation (Point Estimate)
-
ppi_quantile()
- PPI Quantile Estimation
-
print(<ipd>)
- Print IPD Fit
-
print(<summary.ipd>)
- Print Summary of IPD Fit
-
psi()
- Estimating equation
-
pspa_logistic()
- PSPA Logistic Regression
-
pspa_mean()
- PSPA Mean Estimation
-
pspa_ols()
- PSPA OLS Estimation
-
pspa_poisson()
- PSPA Poisson Regression
-
pspa_quantile()
- PSPA Quantile Estimation
-
pspa_y()
- PSPA M-Estimation for ML-predicted labels
-
rectified_cdf()
- Rectified CDF
-
rectified_p_value()
- Rectified P-Value
-
sim_data_y()
- Simulate the data for testing the functions
-
simdat()
- Data generation function for various underlying models
-
summary(<ipd>)
- Summarize IPD Fit
-
tidy(<ipd>)
- Tidy an IPD Fit
-
wls()
- Weighted Least Squares
-
zconfint_generic()
- Normal Confidence Intervals
-
zstat_generic()
- Compute Z-Statistic and P-Value