Skip to contents

All functions

A()
Calculation of the matrix A based on single dataset
Sigma_cal()
Variance-covariance matrix of the estimation equation
augment(<ipd>)
Augment Data from an IPD Fit
calc_lhat_glm()
Estimate PPI++ Power Tuning Parameter
compute_cdf()
Empirical CDF of the Data
compute_cdf_diff()
Empirical CDF Difference
est_ini()
Initial estimation
glance(<ipd>)
Glance at an IPD Fit
ipd()
Inference on Predicted Data (ipd)
link_Hessian()
Hessians of the link function
link_grad()
Gradient of the link function
log1pexp()
Log1p Exponential
logistic_get_stats()
Logistic Regression Gradient and Hessian
mean_psi()
Sample expectation of psi
mean_psi_pop()
Sample expectation of PSPA psi
ols()
Ordinary Least Squares
ols_get_stats()
OLS Gradient and Hessian
optim_est()
One-step update for obtaining estimator
optim_weights()
One-step update for obtaining the weight vector
postpi_analytic_ols()
PostPI OLS (Analytic Correction)
postpi_boot_logistic()
PostPI Logistic Regression (Bootstrap Correction)
postpi_boot_ols()
PostPI OLS (Bootstrap Correction)
ppi_logistic()
PPI Logistic Regression
ppi_mean()
PPI Mean Estimation
ppi_ols()
PPI OLS
ppi_plusplus_logistic()
PPI++ Logistic Regression
ppi_plusplus_logistic_est()
PPI++ Logistic Regression (Point Estimate)
ppi_plusplus_mean()
PPI++ Mean Estimation
ppi_plusplus_mean_est()
PPI++ Mean Estimation (Point Estimate)
ppi_plusplus_ols()
PPI++ OLS
ppi_plusplus_ols_est()
PPI++ OLS (Point Estimate)
ppi_plusplus_quantile()
PPI++ Quantile Estimation
ppi_plusplus_quantile_est()
PPI++ Quantile Estimation (Point Estimate)
ppi_quantile()
PPI Quantile Estimation
print(<ipd>)
Print IPD Fit
print(<summary.ipd>)
Print Summary of IPD Fit
psi()
Estimating equation
pspa_logistic()
PSPA Logistic Regression
pspa_mean()
PSPA Mean Estimation
pspa_ols()
PSPA OLS Estimation
pspa_poisson()
PSPA Poisson Regression
pspa_quantile()
PSPA Quantile Estimation
pspa_y()
PSPA M-Estimation for ML-predicted labels
rectified_cdf()
Rectified CDF
rectified_p_value()
Rectified P-Value
sim_data_y()
Simulate the data for testing the functions
simdat()
Data generation function for various underlying models
summary(<ipd>)
Summarize IPD Fit
tidy(<ipd>)
Tidy an IPD Fit
wls()
Weighted Least Squares
zconfint_generic()
Normal Confidence Intervals
zstat_generic()
Compute Z-Statistic and P-Value