Package index
-
A() - Calculation of the matrix A based on single dataset
-
Sigma_cal() - Variance-covariance matrix of the estimation equation
-
augment(<ipd>) - Augment data from an ipd fit
-
calc_lhat_glm() - Estimate PPI++ Power Tuning Parameter
-
chen_ols() - Chen & Chen OLS
-
compute_cdf() - Empirical CDF of the Data
-
compute_cdf_diff() - Empirical CDF Difference
-
est_ini() - Initial estimation
-
glance(<ipd>) - Glance at an ipd fit
-
ipd-class - ipd: S4 class for inference on predicted data results
-
ipd() - Inference on Predicted Data (ipd)
-
link_Hessian() - Hessians of the link function
-
link_grad() - Gradient of the link function
-
log1pexp() - Log1p Exponential
-
logistic_get_stats() - Logistic Regression Gradient and Hessian
-
mean_psi() - Sample expectation of psi
-
mean_psi_pop() - Sample expectation of PSPA psi
-
ols() - Ordinary Least Squares
-
ols_get_stats() - OLS Gradient and Hessian
-
optim_est() - One-step update for obtaining estimator
-
optim_weights() - One-step update for obtaining the weight vector
-
postpi_analytic_ols() - PostPI OLS (Analytic Correction)
-
postpi_boot_logistic() - PostPI Logistic Regression (Bootstrap Correction)
-
postpi_boot_ols() - PostPI OLS (Bootstrap Correction)
-
ppi_a_ols() - PPI "All" OLS
-
ppi_logistic() - PPI Logistic Regression
-
ppi_mean() - PPI Mean Estimation
-
ppi_ols() - PPI OLS
-
ppi_plusplus_logistic() - PPI++ Logistic Regression
-
ppi_plusplus_logistic_est() - PPI++ Logistic Regression (Point Estimate)
-
ppi_plusplus_mean() - PPI++ Mean Estimation
-
ppi_plusplus_mean_est() - PPI++ Mean Estimation (Point Estimate)
-
ppi_plusplus_ols() - PPI++ OLS
-
ppi_plusplus_ols_est() - PPI++ OLS (Point Estimate)
-
ppi_plusplus_quantile() - PPI++ Quantile Estimation
-
ppi_plusplus_quantile_est() - PPI++ Quantile Estimation (Point Estimate)
-
ppi_quantile() - PPI Quantile Estimation
-
print(<ipd>) - Print ipd fit
-
print(<summary.ipd>) - Print summary.ipd
-
psi() - Estimating equation
-
pspa_logistic() - PSPA Logistic Regression
-
pspa_mean() - PSPA Mean Estimation
-
pspa_ols() - PSPA OLS Estimation
-
pspa_poisson() - PSPA Poisson Regression
-
pspa_quantile() - PSPA Quantile Estimation
-
pspa_y() - PSPA M-Estimation for ML-predicted labels
-
rectified_cdf() - Rectified CDF
-
rectified_p_value() - Rectified P-Value
-
show(<ipd>) - Show an ipd object
-
sim_data_y() - Simulate the data for testing the functions
-
simdat() - Data generation function for various underlying models
-
summary(<ipd>) - Summarize ipd fit
-
tidy(<ipd>) - Tidy an ipd fit
-
wls() - Weighted Least Squares
-
zconfint_generic() - Normal Confidence Intervals
-
zstat_generic() - Compute Z-Statistic and P-Value