Helper function for PPI mean estimation
Arguments
- Y_l
(vector): n-vector of labeled outcomes.
- f_l
(vector): n-vector of predictions in the labeled data.
- f_u
(vector): N-vector of predictions in the unlabeled data.
- alpha
(scalar): type I error rate for hypothesis testing - values in (0, 1); defaults to 0.05.
- alternative
(string): Alternative hypothesis. Must be one of
"two-sided"
,"less"
, or"greater"
.
Details
Prediction Powered Inference (Angelopoulos et al., 2023) https://www.science.org/doi/10.1126/science.adi6000
Examples
dat <- simdat(model = "mean")
form <- Y - f ~ 1
Y_l <- dat[dat$set == "labeled", all.vars(form)[1]] |> matrix(ncol = 1)
f_l <- dat[dat$set == "labeled", all.vars(form)[2]] |> matrix(ncol = 1)
f_u <- dat[dat$set == "unlabeled", all.vars(form)[2]] |> matrix(ncol = 1)
ppi_mean(Y_l, f_l, f_u)
#> lower upper
#> [1,] 0.7239045 1.113139