Helper function for PSPA mean estimation
Arguments
- Y_l
(vector): n-vector of labeled outcomes.
- f_l
(vector): n-vector of predictions in the labeled data.
- f_u
(vector): N-vector of predictions in the unlabeled data.
- weights
(array): 1-dimensional array of weights vector for variance reduction. PSPA will estimate the weights if not specified.
- alpha
(scalar): type I error rate for hypothesis testing - values in (0, 1); defaults to 0.05.
Details
Post-prediction adaptive inference (Miao et al., 2023) https://arxiv.org/abs/2311.14220
Examples
dat <- simdat(model = "mean")
form <- Y - f ~ 1
Y_l <- dat[dat$set == "labeled", all.vars(form)[1]] |> matrix(ncol = 1)
f_l <- dat[dat$set == "labeled", all.vars(form)[2]] |> matrix(ncol = 1)
f_u <- dat[dat$set == "unlabeled", all.vars(form)[2]] |> matrix(ncol = 1)
pspa_mean(Y_l, f_l, f_u)
#> $est
#> [1] 1.077107
#>
#> $se
#> [1] 0.05781881
#>