Skip to contents

pspa_y function conducts post-prediction M-Estimation.

Usage

pspa_y(
  X_lab = NA,
  X_unlab = NA,
  Y_lab,
  Yhat_lab,
  Yhat_unlab,
  alpha = 0.05,
  weights = NA,
  quant = NA,
  intercept = FALSE,
  method
)

Arguments

X_lab

Array or data.frame containing observed covariates in labeled data.

X_unlab

Array or data.frame containing observed or predicted covariates in unlabeled data.

Y_lab

Array or data.frame of observed outcomes in labeled data.

Yhat_lab

Array or data.frame of predicted outcomes in labeled data.

Yhat_unlab

Array or data.frame of predicted outcomes in unlabeled data.

alpha

Specifies the confidence level as 1 - alpha for confidence intervals.

weights

weights vector PSPA linear regression (d-dimensional, where d equals the number of covariates).

quant

quantile for quantile estimation

intercept

Boolean indicating if the input covariates' data contains the intercept (TRUE if the input data contains)

method

indicates the method to be used for M-estimation. Options include "mean", "quantile", "ols", "logistic", and "poisson".

Value

A summary table presenting point estimates, standard error, confidence intervals (1 - alpha), P-values, and weights.

Examples


data <- sim_data_y()

X_lab <- data$X_lab

X_unlab <- data$X_unlab

Y_lab <- data$Y_lab

Yhat_lab <- data$Yhat_lab

Yhat_unlab <- data$Yhat_unlab

pspa_y(X_lab = X_lab, X_unlab = X_unlab,

 Y_lab = Y_lab, Yhat_lab = Yhat_lab, Yhat_unlab = Yhat_unlab,

 alpha = 0.05, method = "ols")
#>     Estimate  Std.Error Lower.CI  Upper.CI       P.value    Weight
#>    1.6121176 0.05486939 1.504576 1.7196596 9.605262e-190 0.9387851
#> X1 0.8468293 0.07314742 0.703463 0.9901956  5.388584e-31 1.0000000